N(1)-C(8)	1.453 (5)	N(1)—C(12)	1.337 (6)	
O(1) - C(1)	1.378 (5)	O(2)-C(9)	1.197 (5)	
O(3)-C(9)	1.314 (5)	O(3)-C(10)	1.464 (5)	
O(4)-C(12)	1.226 (5)	C(1) - C(2)	1.376 (6)	
C(1)-C(6)	1.392 (6)	C(2)—C(3)	1.378 (6)	
C(3)-C(4)	1.393 (6)	C(4)-C(5)	1.380 (6)	
C(4)-C(7)	1.528 (6)	C(5)-C(6)	1.381 (6)	
C(7)-C(8)	1.517 (6)	C(8)-C(9)	1.518 (5)	
C(10)—C(11)	1.384 (8)	C(12)—C(13)	1.507 (7)	
C(8)-N(1)-C(12)	121.8 (4)	C(9)-O(3)-C(10)	118.0 (3)	
O(1) - C(1) - C(2)	123.3 (4)	O(1)-C(1)-C(6)	117.3 (4)	
C(2)-C(1)-C(6)	119.4 (4)	C(1) - C(2) - C(3)	119.8 (4)	
C(2)-C(3)-C(4)	122.1 (4)	C(3)-C(4)-C(5)	117.1 (4)	
C(3)-C(4)-C(7)	121.7 (4)	C(5)-C(4)-C(7)	121.2 (4)	
C(4)-C(5)-C(6)	121.8 (4)	C(1)-C(6)-C(5)	119.8 (4)	
C(4)-C(7)-C(8)	114.3 (4)	N(1)-C(8)-C(7)	111.5 (3)	
N(1)-C(8)-C(9)	110.3 (3)	C(7)—C(8)—C(9)	110.2 (3)	
O(2)-C(9)-O(3)	123.6 (4)	O(2)-C(9)-C(8)	125.0 (4)	
O(3)-C(9)-C(8)	111.4 (3)	O(3)-C(10)-C(11)	111.4 (4)	
N(1)-C(12)-O(4)	122.7 (4)	N(1)-C(12)-C(13)	116.7 (4)	
O(4)—C(12)—C(13)	120.7 (4)			
D - H - A	D…A	H…A	D—H···A	
O(5)—H(5B)…O(2)	2.985 (5)	2.31 (5)	153 (5)	
N(1)-H(1)-O(1')	3.005 (5)	2.09 (5)	166 (4)	
O(1)—H(1A)····O(5 ⁱⁱ)	2.702 (5)	2.00 (6)	171 (6)	
O(5)—H(5A)…O(4 ^{iu})	2.809 (5)	1.93 (6)	173 (5)	
Symmetry code: (i) $1.5 - y, 2.0 - z.$	-x, -0.5+y,	1.5 - z; (ii) $x, -1 + y$	z; (iii) $-0.5 + x$	

Table 2. Bond distances (Å), bond angles (°) and

geometry of the hydrogen bonds (Å, °)

= 0.076. Scattering factors were taken from *International Tables for X-ray Crystallography* (1974, Vol. IV). The correct absolute molecular structure has been assigned to be S at C(8). All computations were performed on a Nova 4S computer and plots drawn on a Tektronix plotter with the SHELXTL system of programs.

Atomic coordinates are given in Table 1.* A perspective molecular drawing and the atom labelling are displayed in Fig. 1. Bond distances, angles and hydrogen-bond geometry are given in Table 2.

Related literature. The crystal structure for *N*-acetyl-L-tyrosine ethyl ester has been published (Pieret, Durant, Germain & Koch, 1972).

I thank Mr R. A. Toscano for technical assistance.

* Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55407 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: KA1001]

References

- IUPAC-IUB COMMISSION ON BIOCHEMICAL NOMENCLATURE (1970). Biochemistry, 9, 3471-3479.
- KLYNE, W. & PRELOG, V. (1960). Experientia, 16, 521-523.
- PIERET, A. F., DURANT, F., GERMAIN, G. & KOCH, M. (1972). Cryst. Struct. Commun. 1, 75–77.
- SHELDRICK, G. M. (1985). SHELXTL. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Germany.

Acta Cryst. (1993). C49, 97-99

Structure of 1,8-Dimethyl-4-oxo-1,2,2a,3,4,5-hexahydrocyclopenta[de]quinoline

BY K. SEKAR AND S. PARTHASARATHY*

Department of Crystallography and Biophysics,[†] University of Madras, Guindy Campus, Madras - 600 025, India

AND K. JOSEPH PRABAHAR AND V. T. RAMAKRISHNAN

Department of Organic Chemistry, University of Madras, Guindy Campus, Madras - 600 025, India

(Received 20 December 1991; accepted 13 April 1992)

Abstract. $C_{13}H_{15}NO$, $M_r = 201.3$, triclinic, $P\overline{1}$, a = 8.929 (2), b = 8.990 (2), c = 8.094 (2) Å, $\alpha = 103.79$ (2), $\beta = 116.71$ (2), $\gamma = 67.86$ (2)°, V = 535.7 (3) Å³, Z = 2, $D_x = 1.25$ g cm⁻³, λ (Cu $K\alpha$) = 1.5418 Å, $\mu = 5.83$ cm⁻¹, F(000) = 216, T = 295 K, R = 0.049, wR = 0.066, for 1493 unique observed reflections $[I > 1.5\sigma(I)]$. The phenyl ring B is planar with a maximum deviation of -0.025 (3) Å, and all

molecular dimensions are normal. Ring A forms a somewhat flattened half-chair conformation. Ring C has an envelope conformation. Molecules are linked by an N—H…O hydrogen bond [2.877 (2) Å, 176 (3)°].

Experimental. Crystals of the title compound were provided by Professor V. T. Ramakrishnan and K. Joseph Prabahar of the Department of Organic Chemistry, University of Madras. Data were collected for a colourless transparent crystal ($0.25 \times$

© 1993 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

[†] Contribution No. 794.

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic thermal parameters $(\text{\AA}^2 \times 10^3)$ for non-H atoms

$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$					
x	у	z	U_{eq}		
13039 (2)	1030 (2)	8033 (2)	53 (1)		
13894 (3)	- 196 (2)	7129 (3)	52 (1)		
12982 (3)	- 420 (2)	5024 (3)	54 (1)		
11893 (3)	1194 (2)	4179 (2)	48 (1)		
10490 (3)	1194 (2)	2194 (2)	54 (1)		
9012 (3)	2827 (2)	2144 (3)	55 (1)		
9168 (2)	3140 (2)	4152 (2)	46 (1)		
8041 (2)	4190 (2)	4986 (3)	49 (1)		
8650 (3)	4166 (2)	6905 (3)	54 (1)		
10271 (3)	3155 (2)	7985 (2)	52 (1)		
11372 (2)	2130 (2)	7115 (2)	44 (1)		
10802 (2)	2196 (2)	5238 (2)	44 (1)		
15336 (2)	-1148(2)	7980 (2)	70 (1)		
7244 (3)	2762 (3)	619 (3)	76 (1)		
6270 (3)	5316 (3)	3902 (4)	68 (1)		
	$U_{\rm eq} = $$x$$13039 (2)$$13894 (3)$$12982 (3)$$11893 (3)$$10490 (3)$$9012 (3)$$9012 (3)$$9012 (3)$$9012 (3)$$9012 (3)$$9012 (3)$$9012 (3)$$10371 (3)$$10371 (3)$$10371 (3)$$11372 (2)$$10802 (2)$$15336 (2)$$7244 (3)$$6270 (3)$$	$U_{eq} = (1/3)\sum_{i}\sum_{j}U_{ij}a_{i}^{*}a_{i}^{*}a_{i}^{*}a_{j}^{*}a_{j}^{*}a_{i}^{*}a_{j}^{$	$\begin{split} U_{\rm eq} &= (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* {\bf a}_i. {\bf a}_j. \\ \hline x & y & z \\ 13039 & (2) & 1030 & (2) & 8033 & (2) \\ 13894 & (3) & -196 & (2) & 7129 & (3) \\ 12982 & (3) & -420 & (2) & 5024 & (3) \\ 11893 & (3) & 1194 & (2) & 4179 & (2) \\ 10490 & (3) & 1194 & (2) & 2194 & (2) \\ 9012 & (3) & 2827 & (2) & 2144 & (3) \\ 9168 & (2) & 3140 & (2) & 4152 & (2) \\ 8041 & (2) & 4190 & (2) & 4986 & (3) \\ 8650 & (3) & 4166 & (2) & 6905 & (3) \\ 10271 & (3) & 3155 & (2) & 7985 & (2) \\ 11372 & (2) & 2130 & (2) & 7115 & (2) \\ 10802 & (2) & 2196 & (2) & 5238 & (2) \\ 15336 & (2) & -1148 & (2) & 7980 & (2) \\ 7244 & (3) & 2762 & (3) & 619 & (3) \\ 6270 & (3) & 5316 & (3) & 3902 & (4) \\ \end{split}$		

 Table 2. Bond lengths (Å), bond angles (°) and torsion angles (°)

N1C2 C2C3 C3C3a C3aC8b C3aC4 C4C5 C5C5a N1C8a	1.348 (3) 1.523 (3) 1.232 (2) 1.527 (2) 1.489 (3) 1.530 (2) 1.555 (3) 1.532 (3) 1.512 (3)	C5C10 C5aC6 C5aC8b C6C11 C6C7 C7C8 C8C8a C8aC8b	1.517 (3) 1.397 (3) 1.375 (2) 1.505 (3) 1.399 (3) 1.391 (2) 1.393 (3) 1.377 (2)
$\begin{array}{c} N1 - C2 - C9 \\ N1 - C2 - C3 \\ O9 - C2 - C3 \\ C2 - C3 - C3a \\ C3 - C3a - C4 \\ C3 - C3a - C4 \\ C3 - C3a - C4 \\ C3 - C4 - C5 \\ C3a - C4 - C5 \\ C4 - C5 - C10 \\ C4 - C5 - C5a \\ C5a - C5a - C5a \\ C5a - C5a - C8b \\ C5 - C5a - C6 \end{array}$	121.2 (2) 117.9 (2) 120.8 (2) 111.6 (2) 118.1 (2) 108.8 (2) 101.6 (2) 104.9 (1) 111.7 (2) 102.1 (1) 117.6 (2) 108.0 (2) 132.6 (2)	$\begin{array}{c} C8b-C5a-C6\\ C5a-C6-C11\\ C5a-C6-C7\\ C7-C6-C11\\ C7-C8-C8a\\ C8-C8a-N1\\ C8-C8a-N1\\ C8-C8a-C8b\\ N1-C8a-C8b\\ C8a-C8b-C5a\\ C8a-C8b-C5a\\ C8a-C8b-C5a\\ C3a-C8b-C5a\\ C3a-C8b-C5a\\ C3a-C8b-C5a\\ C4a-C8b-C5a\\ C4a-C8b-C5a\\$	119.4 (2) 122.4 (2) 116.6 (2) 121.0 (2) 118.2 (2) 118.0 (2) 117.7 (2) 123.9 (2) 122.5 (2) 113.6 (1) 123.8 (2) 123.8 (2)
Ring A N1-C2-C3-C3a C2-C3-C3a-C8b C3-C3a-C8b-C8 Ring B C5a-C6-C7-C8 C6-C7-C8-C8a C7-C8-C8a-C8b	34.9 (3) - 47.7 (3) 33.6 (3) - 1.0 (3) 1.5 (4) - 1.0 (3)	C3a-C8b-C8a-N C8b-C8a-N1-C C8a-N1-C2-C3 C8-C8a-C8b-C5a-C C8a-C8b-C5a-C C8b-C5a-C6-C	$ \begin{array}{rrrr} \mathbf{N}1 & -1.8 & (3) \\ 2 & -16.2 & (3) \\ & -1.8 & (3) \end{array} \\ 5a & -4.2 & (3) \\ 5b & 4.7 & (3) \\ 7 & -2.0 & (3) \end{array} $
Ring C C3aC4C5C5a C4C5C5aC8b C5C5aC8bC3	-29.8 (2) 18.6 (2) a 0.2 (2)	C5a-C8b-C3a-C C8b-C3a-C4-C	C4 - 19.2 (2) 5 29.6 (2)

 0.20×0.25 mm) with an Enraf-Nonius CAD-4 diffractometer using Ni-filtered Cu K α radiation. Unitcell parameters were derived from a least-squares analysis of 25 reflections with $25 \le 2\theta \le 35^{\circ}$. Intensity data were collected with the ω -2 θ scan technique. 1646 unique reflections ($R_{int} = 0.0075$) were measured ($h - 7 \rightarrow 7$, $k - 13 \rightarrow 13$, $l \rightarrow 15$; $2\theta_{max} =$ 120°), of which 1493 had intensities greater than $1.5\sigma(I)$. Two standard reflections, monitored after every 2 h of X-ray exposure, indicated no decay over the full 20 h of data collection. The intensity data were corrected for Lorentz, polarization and absorption (ψ -scan method; transmission factor range 0.971-0.992) effects. Using STATC, a Fortran program for conducting statistical tests for centrosymmetry, developed in this department (Parthasarathy, Ponnuswamy, Elango & Sekar, 1990), the space group of the crystal was found to be $P\overline{1}$. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1990) and refined on F by weighted fullmatrix least squares on a MicroVAX II computer with SHELX76 (Sheldrick, 1976). H atoms were located from a difference Fourier map. All H atoms were allowed to refine with isotropic atomic displacement parameters in the final cycles. Final maximum $\Delta/\sigma = 0.05$ and maximum and minimum heights in the final $\Delta \rho$ maps were 0.16 an $-0.19 \text{ e} \text{ Å}^{-3}$, respectively. Refinement with weights given by $w = [\sigma^2(F) + 0.005381(F_o^2)]^{-1}$ converged at R = 0.049, wR = 0.066 and S = 1.16 for 196 parameters. Atomic scattering factors were those contained in SHELX76 taken from International Tables for X-ray Crystallography (1974, Vol. IV). Final positional and displacement parameters are listed in Table 1* and bond lengths and angles obtained using PARST (Nardelli, 1983) in Table 2. A PLUTO (Motherwell & Clegg, 1978) stereoview of the molecule showing the molecular geometry is presented in Fig. 1.

Related literature. N1–C2 and N1–C8a distances are shorter than the normally expected values. Similar shortening is found to occur in the quinoline ring of other structures, namely, 8-hydroxyquinoline *N*-oxide (Desiderato, Terry & Freeman, 1971), copper 8-hydroxyquinolinate (Palenik, 1964a), zinc 8-hydroxyquinolinate dihydrate (Palenik, 1964b),

* Lists of structure factors, anisotropic displacement parameters, H-atom parameters, bond distances and angles involving H atoms, and least-squares-planes data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55379 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB0271]

Fig. 1. A stereoview of the molecule with atom numbering.

5-acetoxy-6-methoxy-8-nitroquinoline (Sax & Desiderato, 1967) and 6-methoxy-8-nitro-5(1H)-quinolone (Sax, Desiderato & Dakin, 1969).

Thanks are due to the Council of Scientific and Industrial Research, India, for the award of a Senior Research Fellowship to KS.

References

DESIDERATO, R., TERRY, J. C. & FREEMAN, G. R. (1971). Acta Cryst. B27, 2443-2447.

- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- NARDELLI, M. (1983). Comput. Chem. 7, 95-98.
- PALENIK, G. J. (1964a). Acta Cryst. 17, 687-695.
- PALENIK, G. J. (1964b). Acta Cryst. 17, 696-700.
- PARTHASARATHY, S., PONNUSWAMY, M. N., ELANGO, N. & SEKAR, K. (1990). Acta Cryst. A46, C-37.
- SAX, M. & DESIDERATO, R. (1967). Acta Cryst. 23, 319-326.
- SAX, M., DESIDERATO, R. & DAKIN, T. W. (1969). Acta Cryst. B25, 362-368.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England. SHELDRICK, G. M. (1990). Acta Cryst. A46, 467-473.

Acta Cryst. (1993). C49, 99-101

Structure of Ethyl 5-Formyl-4-hydroxy-6-phenylpyridine-2-carboxylate

BY S. GARCÍA-GRANDA* AND J. F. VAN DER MAELEN URÍA

Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain

AND J. BARLUENGA, M. TOMÁS, A. BALLESTEROS AND JIAN-SHE KONG

Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain

(Received 2 August 1991; accepted 29 April 1992)

Abstract. $C_{15}H_{13}NO_4$, $M_r = 271.3$, monoclinic, $P2_1/c$, $a = 8.320(3), b = 7.597(3), c = 20.96(2) \text{ Å}, \beta =$ 93.69 (4)°, $V = 1322 (1) \text{ Å}^3$, Z = 4, $D_r =$ 1.36 Mg m⁻³, Mo $K\alpha$ radiation (graphite-crystal monochromator), $\lambda = 0.71073 \text{ Å}$, $\mu = 0.93 \text{ cm}^{-1}$, F(000) = 568, T = 293 K, final conventional R =0.056 for 931 'observed' reflections and 152 variables. The structure determination showed a planar central nucleus for the molecule with an intramolecular hydrogen bond between the hydroxy and formyl groups. The angle between the least-squares planes through the pyridine and phenyl rings is 133.0 (1)° while the angle between the pyridine ring and ethoxycarbonyl group is 169.5 (2)°.

Experimental. A deoxygenated solution of 1cyclohexyl-8a-ethoxy-4-phenyl-8,8a-dihydrofuro[2,3b][1,4]diazepin-7-one (Barluenga, Tomás, Ballesteros, Kong, García-Granda & Pérez-Carreño, 1991) (176 mg, 0.5 mmol) in toluene (5 ml) was heated in a sealed tube at 393 K for 8 h. After cooling to room temperature, toluene was removed at reduced pressure and the resulting crude mixture chromato-

^{*} To whom correspondence should be addressed.

graphed on silica gel, using hexane-ethyl acetate (2/1) to furnish 3-(N-cyclohexyl)aminocarbonyl-6-ethoxycarbonyl-4-hydroxy-2-phenylpyridine. Then a solution of this compound in THF (20 ml) was stirred with 1M HCl (2 ml) at room temperature for 3 h; then H₂O (10 ml) was added and the resulting mixture extracted with CH_2Cl_2 (3 × 15 ml) and dried (Na_2SO_4) . Removal of the solvents at reduced pressure gave the title compound (115 mg; overall yield from first reaction: 85%); recrystallization from hexane-diethyl ether gave light yellow crystals (m.p. 392–394 K). A crystal of size $0.26 \times 0.20 \times 0.07$ mm was selected for X-ray diffraction, using Mo $K\alpha$ radiation, a graphite-crystal monochromator and an Enraf-Nonius CAD-4 diffractometer. Unit-cell dimensions were determined from the angular settings of 25 reflections with $6 < \theta < 13^{\circ}$. The space group was determined to be $P2_1/c$ from systematic absences. 2677 reflections were measured over hkl range 0, 0, -24 to 9, 9, 24, and for $0 < \theta < 25^{\circ}$, using $\omega - 2\theta$ scans with a variable scan rate and a maximum scan time of 60 s per reflection. Intensity was checked by monitoring three standard reflections every 60 min. Final drift correction factors were between 0.98 and 1.00. Profile analysis was per-